294 research outputs found

    Gender homophily from spatial behavior in a primary school: a sociometric study

    Full text link
    We investigate gender homophily in the spatial proximity of children (6 to 12 years old) in a French primary school, using time-resolved data on face-to-face proximity recorded by means of wearable sensors. For strong ties, i.e., for pairs of children who interact more than a defined threshold, we find statistical evidence of gender preference that increases with grade. For weak ties, conversely, gender homophily is negatively correlated with grade for girls, and positively correlated with grade for boys. This different evolution with grade of weak and strong ties exposes a contrasted picture of gender homophily

    An O(M(n) log n) algorithm for the Jacobi symbol

    Get PDF
    The best known algorithm to compute the Jacobi symbol of two n-bit integers runs in time O(M(n) log n), using Sch\"onhage's fast continued fraction algorithm combined with an identity due to Gauss. We give a different O(M(n) log n) algorithm based on the binary recursive gcd algorithm of Stehl\'e and Zimmermann. Our implementation - which to our knowledge is the first to run in time O(M(n) log n) - is faster than GMP's quadratic implementation for inputs larger than about 10000 decimal digits.Comment: Submitted to ANTS IX (Nancy, July 2010

    Facility Location in Evolving Metrics

    Get PDF
    Understanding the dynamics of evolving social or infrastructure networks is a challenge in applied areas such as epidemiology, viral marketing, or urban planning. During the past decade, data has been collected on such networks but has yet to be fully analyzed. We propose to use information on the dynamics of the data to find stable partitions of the network into groups. For that purpose, we introduce a time-dependent, dynamic version of the facility location problem, that includes a switching cost when a client's assignment changes from one facility to another. This might provide a better representation of an evolving network, emphasizing the abrupt change of relationships between subjects rather than the continuous evolution of the underlying network. We show that in realistic examples this model yields indeed better fitting solutions than optimizing every snapshot independently. We present an O(lognT)O(\log nT)-approximation algorithm and a matching hardness result, where nn is the number of clients and TT the number of time steps. We also give an other algorithms with approximation ratio O(lognT)O(\log nT) for the variant where one pays at each time step (leasing) for each open facility

    Target Design for XUV Probing of Radiative Shock Experiments

    Full text link
    Radiative shocks are strong shocks characterized by plasma at a high temperature emitting an important fraction of its energy as radiation. Radiative shocks are commonly found in many astrophysical systems and are templates of radiative hydrodynamic flows, which can be studied experimentally using high-power lasers. This is not only important in the context of laboratory astrophysics but also to benchmark numerical studies. We present details on the design of experiments on radiative shocks in xenon gas performed at the kJ scale PALS laser facility. It includes technical specifications for the tube targets design and numerical studies with the 1-D radiative hydrodynamics code MULTI. Emphasis is given to the technical feasibility of an XUV imaging diagnostic with a 21 nm (~58 eV) probing beam, which allows to probe simultaneously the post-shock and the precursor region ahead of the shock. The novel design of the target together with the improved X-ray optics and XUV source allow to show both the dense post-shock structure and the precursor of the radiative shock.Comment: 12 pages, 4 figure

    Radiative accretion shocks along nonuniform stellar magnetic fields in classical T Tauri stars

    Get PDF
    (abridged) AIMS. We investigate the dynamics and stability of post-shock plasma streaming along nonuniform stellar magnetic fields at the impact region of accretion columns. We study how the magnetic field configuration and strength determine the structure, geometry, and location of the shock-heated plasma. METHODS. We model the impact of an accretion stream onto the chromosphere of a CTTS by 2D axisymmetric magnetohydrodynamic simulations. Our model takes into account the gravity, the radiative cooling, and the magnetic-field-oriented thermal conduction. RESULTS. The structure, stability, and location of the shocked plasma strongly depend on the configuration and strength of the magnetic field. For weak magnetic fields, a large component of B may develop perpendicular to the stream at the base of the accretion column, limiting the sinking of the shocked plasma into the chromosphere. An envelope of dense and cold chromospheric material may also develop around the shocked column. For strong magnetic fields, the field configuration determines the position of the shock and its stand-off height. If the field is strongly tapered close to the chromosphere, an oblique shock may form well above the stellar surface. In general, a nonuniform magnetic field makes the distribution of emission measure vs. temperature of the shocked plasma lower than in the case of uniform magnetic field. CONCLUSIONS. The initial strength and configuration of the magnetic field in the impact region of the stream are expected to influence the chromospheric absorption and, therefore, the observability of the shock-heated plasma in the X-ray band. The field strength and configuration influence also the energy balance of the shocked plasma, its emission measure at T > 1 MK being lower than expected for a uniform field. The above effects contribute in underestimating the mass accretion rates derived in the X-ray band.Comment: 11 pages, 11 Figures; accepted for publication on A&A. Version with full resolution images can be found at http://www.astropa.unipa.it/~orlando/PREPRINTS/sorlando_accretion_shocks.pd

    Security considerations for Galois non-dual RLWE families

    Get PDF
    We explore further the hardness of the non-dual discrete variant of the Ring-LWE problem for various number rings, give improved attacks for certain rings satisfying some additional assumptions, construct a new family of vulnerable Galois number fields, and apply some number theoretic results on Gauss sums to deduce the likely failure of these attacks for 2-power cyclotomic rings and unramified moduli

    Counter-propagating radiative shock experiments on the Orion laser and the formation of radiative precursors

    Full text link
    We present results from new experiments to study the dynamics of radiative shocks, reverse shocks and radiative precursors. Laser ablation of a solid piston by the Orion high-power laser at AWE Aldermaston UK was used to drive radiative shocks into a gas cell initially pressurised between 0.10.1 and $1.0 \ bar with different noble gases. Shocks propagated at {80 \pm 10 \ km/s} and experienced strong radiative cooling resulting in post-shock compressions of { \times 25 \pm 2}. A combination of X-ray backlighting, optical self-emission streak imaging and interferometry (multi-frame and streak imaging) were used to simultaneously study both the shock front and the radiative precursor. These experiments present a new configuration to produce counter-propagating radiative shocks, allowing for the study of reverse shocks and providing a unique platform for numerical validation. In addition, the radiative shocks were able to expand freely into a large gas volume without being confined by the walls of the gas cell. This allows for 3-D effects of the shocks to be studied which, in principle, could lead to a more direct comparison to astrophysical phenomena. By maintaining a constant mass density between different gas fills the shocks evolved with similar hydrodynamics but the radiative precursor was found to extend significantly further in higher atomic number gases (\sim4$ times further in xenon than neon). Finally, 1-D and 2-D radiative-hydrodynamic simulations are presented showing good agreement with the experimental data.Comment: HEDLA 2016 conference proceeding

    Detailed analysis of Balmer lines in cool dwarf stars

    Get PDF
    An analysis of H alpha and H beta spectra in a sample of 30 cool dwarf and subgiant stars is presented using MARCS model atmospheres based on the most recent calculations of the line opacities. A detailed quantitative comparison of the solar flux spectra with model spectra shows that Balmer line profile shapes, and therefore the temperature structure in the line formation region, are best represented under the mixing length theory by any combination of a low mixing-length parameter alpha and a low convective structure parameter y. A slightly lower effective temperature is obtained for the sun than the accepted value, which we attribute to errors in models and line opacities. The programme stars span temperatures from 4800 to 7100 K and include a small number of population II stars. Effective temperatures have been derived using a quantitative fitting method with a detailed error analysis. Our temperatures find good agreement with those from the Infrared Flux Method (IRFM) near solar metallicity but show differences at low metallicity where the two available IRFM determinations themselves are in disagreement. Comparison with recent temperature determinations using Balmer lines by Fuhrmann (1998, 2000), who employed a different description of the wing absorption due to self-broadening, does not show the large differences predicted by Barklem et al. (2000). In fact, perhaps fortuitously, reasonable agreement is found near solar metallicity, while we find significantly cooler temperatures for low metallicity stars of around solar temperature.Comment: 17 pages, 9 figures, to appear in A&

    Robust modeling of human contact networks across different scales and proximity-sensing techniques

    Full text link
    The problem of mapping human close-range proximity networks has been tackled using a variety of technical approaches. Wearable electronic devices, in particular, have proven to be particularly successful in a variety of settings relevant for research in social science, complex networks and infectious diseases dynamics. Each device and technology used for proximity sensing (e.g., RFIDs, Bluetooth, low-power radio or infrared communication, etc.) comes with specific biases on the close-range relations it records. Hence it is important to assess which statistical features of the empirical proximity networks are robust across different measurement techniques, and which modeling frameworks generalize well across empirical data. Here we compare time-resolved proximity networks recorded in different experimental settings and show that some important statistical features are robust across all settings considered. The observed universality calls for a simplified modeling approach. We show that one such simple model is indeed able to reproduce the main statistical distributions characterizing the empirical temporal networks

    Social network dynamics of face-to-face interactions

    Full text link
    The recent availability of data describing social networks is changing our understanding of the "microscopic structure" of a social tie. A social tie indeed is an aggregated outcome of many social interactions such as face-to-face conversations or phone-calls. Analysis of data on face-to-face interactions shows that such events, as many other human activities, are bursty, with very heterogeneous durations. In this paper we present a model for social interactions at short time scales, aimed at describing contexts such as conference venues in which individuals interact in small groups. We present a detailed anayltical and numerical study of the model's dynamical properties, and show that it reproduces important features of empirical data. The model allows for many generalizations toward an increasingly realistic description of social interactions. In particular in this paper we investigate the case where the agents have intrinsic heterogeneities in their social behavior, or where dynamic variations of the local number of individuals are included. Finally we propose this model as a very flexible framework to investigate how dynamical processes unfold in social networks.Comment: 20 pages, 25 figure
    corecore